ELECTRICAL PANELS
TYPES OF ELECTRICAL PANELS, STANDARDS AND FORMS OF SEPARATION

Future developments in Standardisation
Supplies to electric vehicles

Energy efficient lighting in domestic premises
How to meet the requirements of the Building Regulations

The use of “Arctic” cable
Cable for use at low-temperature

Types of person and the requirements of the Regulations
Examining skills and competencies

www.theiet.org/wiring
Save time
Buy online

A new way of working with Neweys

Newey & Eyre have launched a brand new website. The new online store gives you all your favourite brands and still at your agreed prices. It’s simple – order online by 8pm for next day delivery or collect next working day from any branch. Register today, using your account number and invoice postcode to see for yourself. The same team, the same quality, just a whole lot more convenience.
Future developments in International Standards for electrical installations

by Geoff Cronshaw

The IEE Wiring Regulations (BS 7671:2008) are based on European Standards, which in turn are usually based on international standards. The UK participates in both European and international standards work.

One new area of possible development within international standards is a new section 7 providing requirements for the supplies to electric vehicles. This proposed new section 7 would only apply to circuits intended to supply electrical vehicles for charging purposes and would cover the part of the electrical installation providing the connection with an electrical vehicle to the fixed installation.

However, this is only a new work item at this stage and it is important to point out that this may not become an international standard. This article is based on draft proposals and, therefore, the actual requirements (if it became an international standard) would probably be different. Systems for the distribution of electricity to the public are outside the scope of IEC 60364 low voltage electrical installations (and also outside the scope of BS 7671) therefore it is assumed that this new work item applies to private supplies such as dwellings and private commercial and industrial establishments.

The draft proposals may include requirements for the type and current rating of socket outlets, RCD protection, surge protection, measures of protection against electric shock, IP rating of equipment, impact protection against mechanical damage, isolation and switching and fixing arrangements, etc.

Protection against electric shock
It is expected that the protective measures of obstacles, placing out of reach, non-conducting location and protection by earth-free local equipotential bonding would not be permitted.

These measures are contained in Sections 417 and 418 of BS 7671:2008 and are not for general application. The
protective measures of section 417 provide basic protection only and are for application in installations controlled or supervised by skilled or instructed persons. The fault protective provisions of Section 418 are special and, again, subject to control and effective supervision by skilled or instructed persons.

External influences

Presence of water (AD)

Any wiring system or equipment selected and installed must be suitable for its location and able to operate satisfactorily without deterioration during its working life. The presence of water can occur in several ways, e.g. rain, splashing, steam/humidity, condensation and at each location where it is expected to be present its effects must be considered. Suitable protection must be provided, both during construction and for the completed installation.

For example, draft proposals for a connection point installed outdoors requires IPX4 in order to protect against water splashes (AD4).

The IP classification code, BS EN 60529:2004, describes a system for classifying the degrees of protection provided by the enclosures of electrical equipment. The degree of protection provided by an enclosure is indicated by two numerals. The first numeral

<table>
<thead>
<tr>
<th>First characteristic numeral</th>
<th>Second characteristic numeral</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Protection of persons against access to hazardous parts inside enclosures</td>
<td>Protection of equipment against ingress of water</td>
</tr>
<tr>
<td>(b) Protection of equipment against ingress of solid foreign objects</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 showing IP characteristic numerals

<table>
<thead>
<tr>
<th>No.</th>
<th>Degree of protection</th>
<th>No.</th>
<th>Degree of protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(a) Not protected</td>
<td>1</td>
<td>Protection against vertically falling water drops</td>
</tr>
<tr>
<td></td>
<td>(b) Not protected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(a) Protection against access to hazardous parts with the back of the hand</td>
<td>2</td>
<td>Protected against vertically falling water drops when enclosure tilted up to 15°. Vertically falling water drops shall have no harmful effect when the enclosure is tilted at any angle up to 15° from the vertical</td>
</tr>
<tr>
<td></td>
<td>(b) Protection against foreign solid objects of 50 mm diameter and greater</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(a) Protection against access to hazardous parts with a finger</td>
<td>3</td>
<td>Protected against water spraying at an angle up to 60° on either side of the vertical</td>
</tr>
<tr>
<td></td>
<td>(b) Protection against solid foreign objects of 125 mm diameter and greater</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(a) Protection against contact by tools, wires or such like more than 2.5 mm thick</td>
<td>4</td>
<td>Protected against water splashing from any direction</td>
</tr>
<tr>
<td></td>
<td>(b) Protection against solid foreign objects of 2.5 mm diameter and greater</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(a) As 3 above but against contact with a wire or strips more than 1.0 mm thick</td>
<td>5</td>
<td>Protected against water jets from any direction</td>
</tr>
<tr>
<td></td>
<td>(b) Protection against solid foreign objects of 1.0 mm diameter and greater</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(a) As 4 above</td>
<td>6</td>
<td>Protected against powerful water jets from any direction</td>
</tr>
<tr>
<td></td>
<td>(b) Dust-protected (dust may enter but not in amount sufficient to interfere with satisfactory operation or impair safety)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(a) As 4 above</td>
<td>7</td>
<td>Protection against the effects of temporary immersion in water. Ingress of water in quantities causing harmful effects is not possible when enclosure is temporarily immersed in water under standardized conditions.</td>
</tr>
<tr>
<td></td>
<td>(b) Dust-tight (no ingress of dust)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>No code</td>
<td>8</td>
<td>Protection against the effects of continuous immersion in water under conditions agreed with a manufacturer</td>
</tr>
</tbody>
</table>

Wiring Matters is produced by IET Services Limited, a subsidiary of The Institution of Engineering and Technology (IET), for the IET. Michael Faraday House, Six Hills Way, Stevenage, Herts, SG1 2AY, United Kingdom Tel: +44 (0)1438 313311 Fax: +44 (0)1438 313465 Advertising Sales D Smith +44 (0)1438 767224 daniellesmith@theiet.org Editor G D Cronshaw +44 (0)1438 767384 gcronshaw@theiet.org Contributing Editors M Coles, J Elliott, P Sicheno Design Sable Media Solutions IET Wiring Matters is a quarterly publication from the Institution of Engineering and Technology (IET). The IET is not as a body responsible for the opinions expressed. ©2009 The Institution of Engineering and Technology. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the permission in writing of the publisher. Copying of articles is not permitted except for personal and internal use. Multiple copying of the content of this publication without permission is always illegal. Web-offset printing by Wyndeham Heron, The Bentall Complex, Colchester Road, Heybridge, Maldon, Essex, UK

*Postage/Handling: Postage within the UK is £3.50 for any number of titles. Outside UK (Europe) add £5.00 for first title and £2.00 for each additional book. Rest of World add £7.50 for the first book and £2.00 for each additional book. Books will be sent via airmail. Courier rates are available on request, please call +44 (0)1438 767328 or email sales@theiet.org for rates.

Co-operating Organisations The Institution of Engineering & Technology acknowledges the contribution made by the following organisations in the preparation of this publication: British Electrotechnical & Allied Manufacturers Association Ltd – P D Galbraith, M H Mullins | Design – M Al-Rufaie | City & Guilds of London Institute – H R Lovegrove | Electrical Contractors Association – D Locke, S Burchell | Health & Safety Executive – K Morton | ERA Technology Limited – M Coates, A Finney | Health & Safety Executive – M Al-Rufaie | Department for Communities and Local Government – M Hadley, A Seddigh | Scottish Building Standards Agency | The Institution of Engineering and Technology (IET) | Department for Business, Enterprise and Regulatory Reform | GAMBICA – M Holme | The IET is not as a body responsible for the opinions expressed.

Thank you to Schneider Electric for the image used on the Front Cover and page 16
New PAT300 series portable appliance testers raise the standard for manual and automatic PAT testing

- Easy one button operation
- A full range of PAT tests with an option of flash testing
- 230 V and 110 V operation and testing
- Plug-in RCD testing

To see how the bar has been raised just call 01304 502101

The word ‘Megger’ is a registered trademark

Megger Limited
Archcliffe Road Dover CT17 9EN UK
T +44 (0) 1304 502 101
F +44 (0) 1304 207 342
E uksales@megger.com
indicates protection of persons against access to hazardous parts inside enclosures or protection of equipment against ingress of solid foreign objects. The second numeral indicates protection of equipment against ingress of water (see table 1). More information on the IP classification code is given in IEE Guidance Note 1 - Selection and Erection.

External influences

Impact (AG)
The effect of environmental conditions and general characteristics around an installation should always be assessed to enable suitable electrical equipment to be specified. All electrical equipment selected must be suitable for its location, use and method of installation. Therefore, for equipment installed in a car park site for example, draft requirements may require IK07 or even higher such as IK10 if installed in a more vulnerable location.

The IK classification standard BS EN 62262 describes a system for classifying the degrees of protection provided by enclosures for electrical equipment against external mechanical impacts. The letters IK are followed by two numerals which identify a specific impact energy. BS EN 62262:2002 specifies a system for classifying the degrees of protection provided by enclosures against mechanical impact (IK code).

<table>
<thead>
<tr>
<th>IK Code</th>
<th>IK09</th>
<th>IK01</th>
<th>IK02</th>
<th>IK03</th>
<th>IK04</th>
<th>IK05</th>
<th>IK06</th>
<th>IK07</th>
<th>IK08</th>
<th>IK09</th>
<th>IK10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact energy in joules</td>
<td>*</td>
<td>0.15</td>
<td>0.2</td>
<td>0.35</td>
<td>0.5</td>
<td>0.7</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

* No protection specified

When higher impact energy is required the value of 50 joules is recommended

Table 2: IK characteristics of BS EN 62262:2002

The Standard describes only the general requirements and designations for the system. The application of the system to a specific enclosure type will be covered by the British Standard applicable to that equipment or enclosure. An enclosure is defined as a part providing protection of equipment against certain external influences and protection against contact. This may be considered to include conduit, trunking, etc. In general, the degree of protection will apply to a complete enclosure. If parts of an enclosure have different degrees of protection, they must be separately identified. The coding is separate from the IP rating and will be marked separately as shown in table 2.

Switchgear and controlgear.

BS 7671:2008 (IEE Wiring Regulations) recognises four distinct types of isolation and switching operation:
(i) isolation
(ii) switching off for mechanical maintenance
(iii) emergency switching
(iv) functional switching.

Draft proposals for supplies to electric vehicles include requirements for emergency switching. It is worth noting that BS 7671:2008 states that a plug and socket outlet or similar device shall not be selected as a device for emergency switching.

Socket-outlets

Draft requirements for socket outlets may include similar requirements to caravan sites. For example, industrial type 16A 200 V – 250 V sockets to IEC 60309-2, with an IP rating of IP44, one socket outlet per car park space, 30 mA RCD protection, and requirements for mounting heights, etc.

Other requirements may include visual indication of mains supply, means of isolation/emergency switching, interlock to prevent the plugging/unplugging of the socket-outlet unless the socket-outlet has been isolated from the supply and precautions to prevent the electrical vehicle to supply the fixed installation.

Conclusion

More and more electrical vehicles are on the market. As a result this new work item has been introduced in order to develop the basic requirements for the connection of the electrical vehicle to the fixed installation. This article is only intended as a brief overview of a possible new work item which may or may not be developed into an international standard.
DON’T MISS

ELEX 2009
The Electricians’ Exhibition

Sandown Park, Esher, Surrey
Tuesday 1st & Wednesday 2nd December 2009
10.00am - 4.00pm

SEE AND TRY OUT ALL THE LATEST ELECTRICAL PRODUCTS FROM LEADING MANUFACTURERS AND SUPPLIERS

HUNDREDS OF SHOW DISCOUNTS

FREE SEMINARS ON KEY INDUSTRY ISSUES

FREE PROFESSIONAL ELECTRICIAN T-SHIRT

FREE BACON ROLL

To register for FREE entry, visit www.elexshow.info

or call 01923 237799

Sponsored by IET Electrical excellence

Sandown Park, Esher, Surrey
Tuesday 1st & Wednesday 2nd December 2009
10.00am - 4.00pm

SEE AND TRY OUT ALL THE LATEST ELECTRICAL PRODUCTS FROM LEADING MANUFACTURERS AND SUPPLIERS

HUNDREDS OF SHOW DISCOUNTS

FREE SEMINARS ON KEY INDUSTRY ISSUES

FREE PROFESSIONAL ELECTRICIAN T-SHIRT

FREE BACON ROLL

To register for FREE entry, visit www.elexshow.info

or call 01923 237799

Sponsored by IET Electrical excellence
An article in the previous edition of *Wiring Matters* (Autumn 09 Issue 32) looked at ‘energy efficiency of luminaires’ which highlighted the energy efficiencies of various types of lamps and provided specific information for the phasing out of incandescent type lamps. This article looks at some requirements for energy efficient lighting in domestic premises and includes guidance on some typical scenarios that can be encountered when working on a lighting system.

Building Regulations 2000 energy efficiency requirements

This article will look at the requirements of the Building Regulations 2000 as applicable in England and Wales. Energy efficiency is dealt with by requirements of Regulations 4A, 17C and 17D and Part L of Schedule 1 of the Building Regulations. Regulation 4A relates to thermal elements and so would not be applicable to lighting. Regulation 17C refers to new buildings and 17D refers to consequential improvements to the energy performance of building work to an existing building (with a total useful floor area over 1000 m²). Part L of Schedule 1 has requirements for conservation of fuel and power and is reproduced in Figure 1. Fixed internal or external lighting systems are included within the scope of a ‘fixed building service’ as referred to in L1b and L1c of Schedule 1. The type of building work where energy efficient lighting requirements would apply is the provision of a new dwelling, an extension to an existing dwelling or material change of use of a building to a dwelling and the replacement of a lighting system as part of rewiring works. For domestic premises there are two approved documents that provide guidance on complying with Part L, L1A *Conservation of fuel and power in new dwellings* and L1B *Conservation of fuel and power in existing dwellings*. Included are specifications for the provision of energy efficiency fixed internal and external lighting and is summarized in Figure 2.
When looking to comply with L1c, the occupier of the premises should be given details on the types of lamps to obtain as replacements, including the style, rating and connection so as to continue the benefits of energy efficiency. This is important if the premises have a mixture of dedicated energy efficient light fittings and their associated lamps and retrofit energy efficient lamps.

What is an energy efficient light fitting?
An energy efficient light fitting as specified in the Approved Documents L1A and L1B (Figure 2) is one that comprises the lamp, control gear, housing, reflector, shade or diffuser. This specifies that the fitting will only be capable of accepting lamps that have a luminous efficacy greater than 40 lumens per circuit-watt, where ‘circuit-watts’ is the power that the light fitting control gear and lamp consumes. The lamps would typically be of the compact fluorescent type with pin-based connections and so would not accept lamps of the traditional Edison Screw (SC) or Bayonet Cap (BC) connection types. In the context of energy efficient lighting the whole fitting would typically be referred to as a ‘dedicated fitting’ and there are a number of traditional fitting designs available.

In addition to a dedicated energy efficient light fitting, compact fluorescent lamps are available that have integrated control gear with the traditional SC and BC connections types that also have a luminous efficacy greater than 40 lumens per circuit-watt. A number of lamp designs have been developed to enable the replacement of traditional lamp designs (e.g. traditional GLS, candle, mini globe, reflector) used in existing light fittings. Table 1 provides some information on the equivalent energy efficient lamp for a particular traditional lamp. The traditional tungsten filament and tungsten halogen type lamps do not meet the 40 lumens per circuit-watt requirement and so are not regarded as energy efficient lamps.

Fixed internal lighting
Provide light fittings (including the lamp, control gear, housing, reflector, shade or diffuser) that can only takes lamps having a luminous efficacy greater than 40 lumens per circuit-watt.

Provide fixed energy efficient light fittings (as above) that number no fewer than the greater of:

- a. one per 25 m² of dwelling floor area (excluding garages), or
- b. one per four fixed lighting fittings.

Fixed external lighting
Fixed external lighting should enable the effective control and/or the use of efficient lamps such that:

- a. Either, the lamp capacity does not exceed 150 Watts per light fitting and the lighting automatically switches off:
 - i. When there is enough daylight; and
 - ii. When it is not required at night; or
- b. The light fittings have sockets that can only be used with lamps having an efficacy greater than 40 lumens per circuit-watt.
halogen lamps are available that consume less power than standard halogen lamps, typically up to 30%, that can be used to retrofit into existing GU10 type fittings. Light Emitting Diode (LED) array lamps are now available that consume a small amount of power and have a longer life than the compact fluorescent types. These can be used to replace halogen lamps in existing light fittings or can be installed as part of a new LED fitting or arrangement. There are also LED lamps available for the replacement of traditional incandescent lamps, typically up to 40W.

Replacing an existing light fitting
For this scenario the replacement of a light fitting in domestic premises would have looked to comply with the requirements given in Approved Document L1A. The dedicated low energy light fittings are likely to be in areas such as the lounge, dining room, kitchen and hallways as these normally have lights switched on for the most hours in a day, so any replacement of these fittings would need to be of the dedicated low energy type so as to retain the energy efficient status. Replacement of a light fitting that is not an energy efficient type could be carried out but it should be recognised that the continual maintenance with regards to replacement of lamps may not be possible due the phasing out programme of incandescent lamps.

For older domestic premises that did not need to meet the provision of energy efficient light fittings, the Building Regulations does not specifically state that the replacement of a light fitting has to be with an energy efficient type as the requirements relate to extensions to a dwelling, where a dwelling is created from a material change of use or an existing lighting system is being replaced as part of rewiring works. Replacing a light fitting is not replacing a lighting system and it is unlikely that the occupier would be in a worse position with regards to their energy usage. However, the occupier should be encouraged to have an energy efficient light fitting.

Rewiring a lighting circuit
For this scenario the rewiring of a lighting circuit in a dwelling would need to comply with the conservation of energy and power requirements related to a fixed building service as detailed in Approved Document L1B (Figure 2). The appropriate number of fixed internal energy efficient dedicated type light fittings should be installed in the main living areas where lighting is on for the most number of hours. Any fixed external lighting that forms part of the rewiring work as supplied by the fixed electrical installation should also comply with the requirements for external lighting.

Installing lighting as part of building works for an extension to domestic premises
For this scenario the installation of additional fixed internal and/or external lighting in a dwelling due to building work, such as an extension would need to comply with the conservation of energy and power requirements related to a fixed building service as detailed in Approved Document L1B (Figure 2). For a newer dwelling that includes a number of energy efficient light fittings, reasonable provision of energy efficient lighting is expected in the extension so that the occupier continues to obtain the benefits. For an older dwelling that does not have any energy efficient light fittings then there will be an obvious benefit of installing energy efficient light fittings as part of the building work. The guidance does
recognise flexibility, so it could be reasonable to install energy efficient fittings in main living areas that did not previously have any rather than the extension to fulfil the requirements. However as already highlighted there are a number of energy efficient lighting solutions available, therefore energy efficient solutions should be agreed with the occupier, especially if the phasing out of traditional lamps is highlighted as part of the selection process.

Code for sustainable homes
The technical guidance for the provision of energy efficient lighting in approved document L1A for new dwellings is the minimum standard. In April 2007 the Government introduced the ‘Code for Sustainable Homes’ which is a national standard for the design and construction of sustainable new homes. The Code sets minimum standards for energy and water use for homes within England. From 1st May 2008 it was mandatory for a new home to have a rating against the code. The Code supports the government target that all new homes will be zero carbon from 2016. The associated technical guidance document includes requirements for the provision of energy efficient light fittings that exceed the current requirements of Building Regulations.

Additional information
The energy saving trust is an independent organisation that promotes action on energy saving issues (www.energysavingtrust.org.uk). The following publications relating to energy efficient lighting are available:

- Energy efficient lighting – guidance for installers and specifiers (CE61)
- Low energy domestic lighting (GIL20)
- Cost benefit of lighting (CE56)
- Energy saving lamps should be marked with the energy saving recommended certification mark. This means they have been independently tested to verify their overall quality and energy efficiency claims.

- A guide to energy saving light bulbs is available from the Lighting Association website (http://www.lightingassociation.com/pdf/EST_lighting_English_Final09.pdf)
- Aurora has a useful tool for showing the benefits of using energy efficient lamps along with a range of energy efficient lighting solutions. www.aurora.eu.com/EnergyCalculator.aspx
- Information on the Code for Sustainable Homes is available from the Communities and Local Government website (http://www.communities.gov.uk/planningandbuilding/buildingregulations/legislation/codesustainable/)
- Building Regulations approved documents along with the government proposals for the development of Part L are available from the government planning portal (www.planningportal.gov.uk).
- Local Authority Building Control (www.labc.uk.com)

Brother PT-7600VP
Includes carry case and mains adapter

- How many times have you been let down by previous labelling?

A Brother P-touch label printer comes pre-loaded with electrical symbols, a back-lit display and produces durable labels, which leave a lasting impression of the true professional you really are. Ideal for all jobs from cable flagging and pipe identification to identifying electrical components.

Contact your usual electrical wholesaler or visit www.brother.co.uk/electrician

All Brother label printers come with a 3 year warranty upon registration.
Types of person and the requirements of the Wiring Regulations

by Jon Elliott

BS 7671 contains requirements for the design and construction of electrical installations with the intention of producing an installation which is both safe to use and which is capable of being employed for its intended purpose (120.1 refers). The scope of installation types covered by BS 7671 is very broad. Indeed, the ever increasing complexity of installations and the continuing development and subsequent recognition of technical innovations and products necessitates the inclusion of additional requirements. To illustrate this, the scope of BS 7671 has been expanded in the 17th Edition to include requirements relating to installations in Marinas,

Exhibitions, Shows and Stands, Solar Photovoltaic supply systems and Mobile and Transportable units and, indeed, will expand still further when amendment one is released mid 2011.

It is not uncommon for the design, construction and initial verification of a small domestic, industrial or commercial installation or additions or alterations on such installations to be carried out by one and the same person. However, the design of more complex or specialist installations will typically be carried out by a number of individuals given specific duties or areas of responsibility or by design consultancies. The actual installation process will then often be performed by a specialist electrical contractor as will the required inspection, testing and certification. It is also not uncommon for a separate body to be taken on to commission the installation prior to handover. Increasingly, different aspects of the overall project such as the installation of fire protection and fire alarm systems, lightning protection and, indeed, items of complex or specialist production equipment will be dealt with by separate contractors.

BS 7671 also contains requirements for the inspection, testing and certification of the installation both during the initial verification process and periodically throughout the life of the installation. As mentioned above, the person or company carrying out initial installation work must also be capable of inspecting, testing and certificating the work that they have carried out. However persons or companies carrying out periodic inspections and producing reports on the condition of an existing installation, whether or not
originally installed by them, need to look at the installation in a different way. They are in effect commenting upon the continuing suitability for use of the installation based upon their observations and the results of a range of tests which they have performed. However unlike when performing initial verification, they need to bear in mind when the installation was first installed and hence what requirements were in force at that time. They also need to apply judgement as virtually all installations will, with the passing of time, show some signs of damage, deterioration and general wear-and-tear which may or may not have diminished the safety of the installation.

The issue of maintainability of an installation is also addressed within BS 7671 albeit briefly. Persons maintaining an installation may require either basic or in-depth knowledge of the installation or the equipment therein dependent upon the duties they are required to perform and their level of responsibility. In larger, more complex installations a person or persons will be required to have oversight of and responsibility for the work activities carried out by the maintenance staff in their employ.

Upon completion the installation has to perform properly the tasks for which it is designed. However, persons making use of, or operating the installation will require different capabilities depending upon the nature and complexity of the premises and its intended purpose. In domestic premises, a user should be able to operate the switchgear to control lighting and other final circuits within the installation, periodically press the integral test button on residual current devices, reset overcurrent protective devices and possibly replace fuses. In a factory environment a machine operator should be sufficiently knowledgeable to use those pieces of equipment to which they have been assigned such that they are safe and productive. This will require guidance of both what should be done and what should not. A deep knowledge or understanding of the workings of the machinery may not be necessary. However, the operator will need to be aware of their limitations and as such when it will be necessary to call on persons with greater expertise for assistance.

BS 7671 also contains a number of limitations as to what class of person may perform particular activities covered by the requirements therein. These limitations are put in place either on account of particular hazards which might only be avoided by a person possessing a requisite level of knowledge, such as for example the use of protective measures where obstacles or placing out of reach is to be used to provide basic protection (417.1 refers) or where continued monitoring of the effectiveness of the supply and earthing arrangements is necessary to ensure safe use (717.411.4 refers).

It can be seen therefore that:
• there are many different types of installation covered by the scope of BS 7671
• electrical installations are designed, constructed, insulated, tested, certificated, used and maintained by a diverse range of people
• these people will need different skills sets depending upon how they are involved with the construction, use or upkeep of the installation.

BS 7671 recognises three types of person which are defined in Part 2:

Ordinary person. A person who is neither a skilled person nor an instructed person.

Instructed person. A person adequately advised or supervised by skilled persons to enable him/her to avoid dangers which electricity may create.

Skilled person. A person with technical knowledge or sufficient experience to enable him/her to avoid dangers which electricity may create.

Some clarification of what is meant by these definitions is given in Appendix 5 which classifies external influences and is expanded upon below.

Ordinary person

Being neither electrically skilled nor instructed, ordinary persons do not have sufficient knowledge, experience or supervision to avoid the dangers which electricity may create. Residents of domestic premises and the users of caravans, boats and leisure craft are typical examples as are employees within the workplace unless specifically identified as being skilled or instructed in connection with their work activities. It should be noted at this point that all domestic premises should be designed to be suitable for use by ordinary persons. As such, it is neither here nor there whether the current or prospective occupier is other than an ordinary person.

Instructed person

Both persons with some electrical knowledge and those with none may be classified as instructed persons.

This would include for example operators of machinery in an industrial environment and some grades of maintenance staff employed to carry out specific duties for which they have received specific and sufficient instruction. It would also by necessity include trainees and apprentices who have to be given increasing opportunities, albeit whilst suitably supervised, in order to allow them to become skilled themselves in time.

At the other extreme it is necessary from time to time for electrical plant rooms to be cleaned or redecorated. At such times the decorators should be informed of particular hazards which may exist in the particular locations in which they are working. Nevertheless supervision by a suitably skilled person may still be necessary in some circumstances even when basic instruction has been given. Clearly in such cases it will fall upon someone to carry out a risk assessment...

Skilled person

Persons become skilled as a result of a number of factors including guided learning achieved from completion of appropriate education and training within a further or higher education establishment and supervised work experience within the work environment in which they wish to become skilled. Generally speaking, becoming skilled takes a considerable period of time during which a transferable skills and underpinning knowledge base is developed which can then applied to differing situations as the trainee is given ever more practical experience. On completion of a number of predefined objectives, which typically include both practical and theoretical tests, a person is judged to be skilled at a particular level such as electrician, approved
Capability of persons

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA1</td>
<td>Ordinary persons</td>
<td>Uninstructed persons</td>
</tr>
<tr>
<td>BA2</td>
<td>Children</td>
<td>Children in locations intended for their occupation</td>
</tr>
<tr>
<td></td>
<td>NOTE - This class does not necessarily apply to family dwellings</td>
<td></td>
</tr>
<tr>
<td>BA3</td>
<td>Handicapped persons</td>
<td>Persons not in command of their physical and/or intellectual abilities</td>
</tr>
<tr>
<td></td>
<td>(sick person, old persons)</td>
<td>(sick person, old persons)</td>
</tr>
<tr>
<td>BA4</td>
<td>Instructed</td>
<td>Persons adequately advised or supervised by skilled persons to enable them to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>avoid dangers which electricity may create (operating and maintenance staff)</td>
</tr>
<tr>
<td>BA5</td>
<td>Skilled</td>
<td>Persons with technical knowledge knowledge or sufficient experience to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>enable them to avoid dangers which electricity may create</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(engineers and technicians)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nurseries Requirement for inaccessibility of electrical equipment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limitation of temperature of accessible surfaces.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hospitals Requirement for inaccessibility of electrical equipment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limitation of temperature of accessible surfaces.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electrical operating areas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Closed electrical operating areas</td>
</tr>
</tbody>
</table>

Extract from Appendix 5 of BS 7671 (Concise list of external influences)

electrician, electrical fitter, technician or the like.
However it should always be borne in mind that there are many aspects in which persons may be skilled within a particular occupation and as such when a person considers their suitability or that of their staff to perform particular tasks they should be considering whether the required skills are possessed in order to complete the task in hand properly and safely. An electrician for example who since their initial training has always worked in domestic premises and is fully conversant with the range of activities typical to such premises may be completely out of their depth if placed in an industrial or commercial installation. Similarly although many of the skills picked up by an electrician during their training and day-to-day work experience will be transferable to new situations it may on occasion be necessary for additional skills to be learned to enable particular specialised equipment to be installed and/or maintained; or to attend subject updating activities in order to refresh or update their knowledge. This brings us to the issue of competency.

Competency

The publication of the 17th Edition saw the introduction of a definition of competent person:

Competent person. A person who possesses sufficient technical knowledge, relevant practical skills and experience for the nature of the electrical work undertaken and is able at all times to prevent danger and, where appropriate, injury to him/herself and others.

The wording of this definition is very closely based upon the content of Regulation 16 of the Electricity at Work Regulations 1989 and the guidance provided on this regulation by the Health and Safety Executive in their publication HSR25 Memorandum of guidance on the Electricity at Work Regulations 1989. It is very similar to the definition of skilled person. Regulation 16 of EWR 1989 is reproduced below:

No person shall be engaged in any work activity where technical knowledge or experience is necessary to prevent danger or, where appropriate, injury, unless he possesses such knowledge or experience, or is under such degree of supervision as may be appropriate having regard to the nature of the work.

Looking at this it can be seen that Regulation 16 recognises that competency may be achieved from an individual having sufficient knowledge and experience to avoid danger or injury, or from their being supervised to some extent by someone having such knowledge and experience. As such it can be seen that either a skilled or an instructed person and indeed even an ordinary person, may in some circumstances, be considered to be competent.

However an extremely important aspect of competency, too frequently overlooked, is the need for persons to know the limits of their ability and technical knowledge. This failure is clearly demonstrated by the unacceptably high number of deaths and injuries that occur to persons employed to work on or near electrical installations and persons under their control or indeed to persons using installations designed or installed by someone purported to be competent. It is inevitable that a person will experience new situations, products and working practices in the course of their career, however they must always work within their limits and where necessary either complete the necessary subject updating or engage the services of a specialist possessing the required competencies to carry out the work on their behalf.

In the next edition of **Wiring Matters** we will look at particular requirements within BS 7671 where the type of person involved is of some significance.
No Worries

PART P FOR BRIGHT SPARKS

No Worries

Switch on and save with the latest electrical courses from the IET

With new courses and our great prices, there has never been a better time to plan your electrical training with the IET. Our new brochure details all the courses on offer, with dates and how to take advantage of our early booking discounts (see page 19 of the brochure) to save even more money.

New for 2010

- 1 day course in Periodic Reporting of Commercial and Industrial Electrical Installations
- 1 day course in Periodic Reporting of Domestic Installations

Both have been designed to assist electrically skilled personnel who require guidance in completing the periodic inspection report.

Don’t delay!

Are you a qualified supervisor?
Are your qualifications updated to the 17th Edition?
Do you need to comply with the Electrotechnical Assessment Specification (EAS)?
To help gain your qualification the IET provides two 17th Edition training courses:
- 1 day 17th Edition workshop
- 3 day 17th Edition Certificate in the Requirements for Electrical Installations

To discuss your training requirements with one of our short course experts, please call 01438 767289 or email coursesreg@theiet.org

The Institution of Engineering and Technology is registered as a Charity in England & Wales (no 211014) and Scotland (no SC038688).

Contact the ELECSA Registration Team on
0845 634 9043
or email enquiries@elecsa.co.uk
www.elecsa.co.uk

Simple, straightforward and hassle-free, it’s no wonder more electricians are joining ELECSA than any other Part P scheme. Maybe it’s because our application process is just ridiculously easy and once registered we keep the paperwork down to an absolute minimum. Or the fact that we’ve introduced a flexible direct debit payment process that allows you to spread the cost of your assessment fee. Perhaps its our assessors, all of which are time-served electricians who offer a fair and objective service. Whatever the reasons are, be a bright spark and ease the process of Part P with ELECSA.

PART P FOR BRIGHT SPARKS

Download the new brochure at: www.theiet.org/courses-wm
The use of “Arctic’ cable” by Mark Coles

In *Wiring Matters* Summer 2009, Issue 31, an article was published entitled Cables for temporary installations and included a sub-section headed *The use of “Arctic” cable*. The IET’ s technical helpline took a number of calls with a common theme - i.e. can blue-sheathed cable, made to BS 6500, be used for 230 V a.c. single-phase supplies to equipment in temporary use? The answer is yes but not at temperatures lower than +5°C. The following is intended to clarify.

Introduction

It is common to see blue-sheathed flexible cables, sometimes referred to as "Arctic” cable, used on temporary low-voltage installations, such as construction sites, fairgrounds and musical events. In addition to blue, this type of cable is available in many different colours, such as yellow and orange and some cables even have the word ARCTIC embossed throughout the length. Not all cables are suitable for all applications. It is, therefore, important to establish the suitability of the cable in question prior to selection by referencing the standard to which the cable is manufactured. Two standards for flexible cable will be considered here - BS 7919 and BS 6500.

Cables to BS 7919

Electric cables — Flexible cables rated up to 450/750 V, for use with appliances and equipment intended for industrial and similar environments

Ordinary duty low temperature PVC insulated and sheath 300/500 V flexible cable, manufactured to BS 7919 Table 44 (not harmonised), commonly referred to as 3183A (Arctic Grade Flex), was specifically designed and, hence, included in the British Standard, for use at 110 V a.c. from centre tapped transformers (55 V - 0 - 55 V). The cable is suitable for installation and handling down to a temperature of -25°C, e.g. suitable for construction site installations and is often seen in

<table>
<thead>
<tr>
<th>Cable Type</th>
<th>Standard reference BS 7919:2000</th>
<th>Recommendations for use</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordinary duty low temperature PVC sheathed cord circular</td>
<td>Table 44</td>
<td>The cables are suitable for:</td>
<td>Usage on UK building sites, with ELV (110 V centre tapped) may include hand-held tools.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– use on ELV systems (110V centre tapped) on building sites in the UK,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– use with temporary traffic light systems when suitably protected.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The cables are not suitable for:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– outdoor use at standard voltages</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– in industrial* or agricultural buildings</td>
<td></td>
</tr>
</tbody>
</table>

Table 7B: Cables conforming to BS 7919 — Guide to use
The use of Arctic cable

use on temporary road works for supplies to traffic lights; Table 7B from BS 7450, refers.

Note that cables to BS 7919 Table 44 have not been harmonised to European HDs. This is because the use of 110 V a.c. supplies from centre tapped transformers (55 V - 0 - 55 V) is a UK only practice and is not recognised or practised elsewhere.

BS 6500

Electric cables - Flexible cords rated up to 300/500 V, for use with appliances and equipment intended for domestic, office and similar environments

Ordinary duty PVC insulated cables - Flexible cords rated up to 300/500 V, for use with appliances and equipment intended for domestic, office and similar environments

Neither BS 6500 nor BS 7919 requires the cable to be marked with the word *Arctic*. Should any cable be marked as *Arctic*, it is solely the responsibility of the manufacturer to justify any such claim. The only PVC flexible cable that could be classified as being suitable for low temperature use is a cable to BS 7919 Table 44 as it can be installed and handled down to a temperature of -25°C; it would seem logical that only this cable would/should have the term ‘ARCTIC’ marked on it.

Summary

The table shown above summarises this article.

<table>
<thead>
<tr>
<th>Cable standard</th>
<th>Suitable voltage</th>
<th>Lowest temperature for installation and handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS 7919 Table 44</td>
<td>110 V a.c. (55 V - 0 - 55 V)</td>
<td>-25°C</td>
</tr>
<tr>
<td>BS 6500</td>
<td>up to 300 V a.c. 1Ø or 500 V a.c. 3Ø</td>
<td>+5°C</td>
</tr>
</tbody>
</table>

Further reading

- BS 6500:2000 - Electric cables - Flexible cords rated up to 300/500 V, for use with appliances and equipment intended for domestic, office and similar environments
- BS 7919:2001 Electric cables - Flexible cables rated up to 450/750 V, for use with appliances and equipment intended for industrial and similar environments

Specialist Electrical Training & Consultancy

- HV safety training: land based & marine/offshore power systems
- HV ‘authorised person’ training courses
- LV ‘authorised person’ training
- Electrical protection & switchgear maintenance
- 17th Edition Wiring Regulations
- HV safety rules auditing and developing
- HV sanction for test
- ROV HV safety operation
- Electrical equipment in hazardous area
- Electrical for non-electrical personnel
- Live testing on AC & DC systems
- Industrial electrical plant maintenance
- Basic electrical safety training

Training centres in the UK & Cyprus

The Faraday Centre

Tel: 01642 467236
www.faradaycentre.co.uk

17th Edition IEE Wiring Regulations Exams

Gain the City & Guilds 2382 Part 10

Join our 3-day course and take the exam on the third day:
- 18 – 20 January 2010
- 15 – 17 March 2010
- 17 – 19 May 2010

Already got the 16th Edition? Update your qualification!

Gain the 17th Edition City & Guilds 2382 Part 20 with our 1-day course:
- 21 January 2010
- 18 March 2010
- 20 May 2010

All inclusive cost

£480 for the 3-day course or £210 for the 1-day course includes tuition, online exam entry, manuals, lunch and refreshments.

Location

West Thames College, London Road, Isleworth, West London TW7 4HS

Train: Isleworth
Tube: Osterley or Hounslow East (Piccadilly Line)
Bus: 237, 235, H37 and 117 stop at the college. We are located just 10 minutes’ walk from Hounslow Bus Station

Parking: Limited

For more information
Contact Penny O’Hare on 020 8326 2492
email: penelope.ohare@west-thames.ac.uk
website: www.west-thames.ac.uk

The use of Arctic cable: ARCTIC. Should any cable be classified as being suitable for low temperature use is a cable to BS 7919 Table 44 as it can be installed and handled down to a temperature of -25°C; it would seem logical that only this cable would/should have the term ‘ARCTIC’ marked on it.
Electrical Panels by Mark Coles

Introduction
At many events in which the IET participate, such as the ELEX and InterBuild shows, questions are asked about standards to which hand-wired electrical control panels are to comply. This article looks at types and forms of electrical panels, uses, competency and the standards to which they are to comply.

Electrical panels come in many shapes and sizes (of course) and have many applications. Consider a simple empty box which is then firmly fixed to the ground or building structure, adapted to enclose electrical equipment and terminations to perform a particular function - the empty box becomes an electrical panel and issues relating to electrical safety are to be considered.

Factory built panels and Forms of Electrical Separation
BS EN 60439-1:1999 gives guidance on the forms of separation applicable to factory-built switchgear and controlgear assemblies (switchboards, motor control centres, distribution boards, busbar trunking systems, etc.), known as type-tested and partially type-tested assemblies. These forms of separation provide protection against contact with live parts (known as basic protection) belonging to adjacent devices and protection from the probability of initiating arcing faults and the passage of foreign bodies between units of the assembly. The Standard also gives guidance on other requirements for protection against electric shock.

Four forms of separation are indicated in the main text of BS EN 60439-1:1999 but there is no specific detail given on how these forms are to be achieved. It is stated in the Standard that the form of separation should be agreed between manufacturer and designer/user. It shall be remembered that higher forms of separation specified will increase costs but will give better operational flexibility regarding safe working when connecting in additional circuits or carrying out maintenance. This ‘trade-off’ must be carefully assessed.

The four forms given have basic definitions and applications but Forms 2 to 4 can be further subdivided into more specific ‘Types’ (applications) by discussion and agreement with manufacturers.

Form 1
This form provides for an enclosure to provide protection against direct contact with live parts but does not provide any internal separation of switching, isolation or control items or terminations. These overall assemblies are often known as ‘wardrobe’ type with large front opening doors, usually with an integral door-interlocked isolator. Operating the isolator interrupts all functions but allows the door to be opened to gain access to the assembly for installation or maintenance. Such assemblies normally have lower fault withstand and it may be inconvenient to shut down a whole plant or system for a simple maintenance or repair operation.

Form 2
The overall assembly enclosure provides protection against direct contact with live parts; separation is provided between the busbar assembly and switching, isolation, control items and terminations. There is very little advantage of this over Form 1 and the style is similar. Form 2 can be subdivided into:

- Type 1 - in which the busbars are separated by insulation of the bars.
- Type 2 - in which the busbars are separated by metallic or non-metallic rigid barriers.

Form 3
The enclosure provides protection against direct
CREDIT CRUNCH TAKING EFFECT?
For a limited period of time, NAPIT is offering you the opportunity to transfer your electrical membership to NAPIT for *FREE and receive 18 months for the price of 12!* This offer is only valid until 8th March 2010, so call NAPIT on: 0870 444 1392 or alternatively email: info@napit.org.uk * Conditions apply

NAPIT
4th Floor, Mill 3, Pleasley Vale Business Park
Mansfield, Nottinghamshire. NG19 8RL
www.napit.org.uk

FREE Estimating Software & Catalogue DVD
Electrika is supported by the UK’s leading brands to bring you:
• 140,000 updated Trade Prices
• 1000’s PDF Catalogues & Technical Docs
• Professional quality Estimating package
• Built-in Ordering & Job Costing
• Add your own Specials
• Create your own Local Databases
• Regular price updates
Visit www.electrika.com to register for your Free DVD
Electrika Ltd
T: 0161 945 5124 E: info@electrika.com

Handheld Electronic Label Printer
Brother’s P-touch range of durable handheld electronic label printers are perfect for electrical installers who need to mark wiring and tools clearly and effectively. Brother’s patented TZ tapes create durable labels that are scuff, fade, water, temperature and chemical resistant. The label printers are designed to withstand tough on-site conditions and their compact design make them easy to store and transport.
Brother T: 0844 499 9444

17TH EDITION TESTING & CERTIFICATION
Seaward has introduced an innovative new concept in 17th edition fixed electrical installation testing and certification in the shape of the new Power Plus 1557. The new concept works by incorporating an electronic copy of the inspection and test certificate in a combined multi-function electrical tester and data logger. The lightweight PowerPlus 1557 multifunction tester has been designed for maximum portability and ease-of-use. Unique onboard electronic certificate software enables test data to be recorded directly by the tester using a replica of the inspection and test certificate, which is displayed on the instrument.

In-Company electrical training
The IET runs in-company electrical training courses which are carefully tailored to best suit your company’s requirements. Reduce staff time away from the workplace and eliminate travel and accommodation costs by having courses run on your premises. Contact us to discuss your requirements on 01438 767289 or email coursesreg@theiet.org

Greenlee hole punching tools have launched a new hydraulic battery punch driver featuring Lithium Ion battery technology making accurate punching of holes effortless and with minimal noise or vibration:
• More Power – 18V 3Ah Li-Ion batteries 20 min charge
• More Ergonomics – totally balanced around the wrist, minimising work fatigue (RSI).
• Punches last longer – the tool automatically detects when the hole has been made, turning the tool off and preventing die damage.
• Punching Range – mild and stainless, up to 105 x 105mm sq or 96mm round.
Visit www.klauke.com for more information and to request the new catalogue.

ROVs High Voltage Safety
The strong link between practical ‘hands-on’ training and work practices creates relevant, enduring and transferable outcome. The Faraday Centre provide hands-on training to support theoretical learning. Courses include high voltage safety operation on land-based switchgear equipment, marine/offshore and Remote Operated Vehicles (ROVs).

On-Site Guide
The On-Site Guide is intended to enable the competent electrician to deal with small installations (up to 100 A, 3-phase). It includes simple circuit calculations and provides essential information in a convenient, easy-to-use form, avoiding the need for detailed calculations. Buy your copy at www.theiet.org/osg

In-Company electrical training
The IET runs in-company electrical training courses which are carefully tailored to best suit your company’s requirements. Reduce staff time away from the workplace and eliminate travel and accommodation costs by having courses run on your premises. Contact us to discuss your requirements on 01438 767289 or email coursesreg@theiet.org

For details on how to feature your product contact Danielle Smith on 01438 767224

Greenlee

Handheld Electronic Label Printer

www.theiet.org/osg

www.theiet.org/courses

www.brother.co.uk/labelling

www.seaward.co.uk

www.klauke.com

NAPIT

FREE Estimating Software & Catalogue DVD

CREDIT CRUNCH TAKING EFFECT?

On-Site Guide

www.theiet.org/osg

www.theiet.org/courses

www.brother.co.uk/labelling

www.seaward.co.uk

www.klauke.com

IET Wiring Matters | Winter 09
The Institution prepares regulations for the safety of electrical installations for buildings, the IEE Wiring Regulations (BS 7671), which has now become the standard for the UK and many other countries. It has also prepared the Code of Practice for Installation of Electrical and Electronic Equipment in Ships (BS 8450) and recommends, internationally, the requirements for Mobile and Fixed Offshore Installations. The Institution provides guidance on the application of BS 7671 through publications focused on the various activities from design of the installation through to final test and certification with further guidance for maintenance. This includes a series of eight Guidance Notes, two Codes of Practice and model forms for use in wiring installations.

BEST SELLER

REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

The Wiring Regulations are the national standard to which all domestic and industrial wiring must conform. Substantial changes have been incorporated in BS 7671:2008 to align with European documents. Essential for all electricians, electrical contractors and their managers, installation designers, and students in further education and professional training.

Contents:
- Scope, Object and Fundamental Principles
- Definitions: Assessment of General Characteristics
- Protection for Safety
- Principles
- Contents: Professional training
- students in further education and managers, installation designers, and professional training.
- ISBN 978-0-86341-862-4
- 2008
- Paperback 180pp
- Order book PWR1700B £22

BEST SELLER

ON-SITE GUIDE

BS 7671:2008

The On-Site Guide is intended to enable the competent electrician to deal with small installations (up to 100 A, 3-phase). It provides essential information in a convenient, easy-to-use form, avoiding the need for detailed calculations.

Contents:
- Introduction. The service position.
- ISBN 978-0-86341-844-0
- 2008
- Paperback 389pp
- Order book PWGO170B £75

NEW NOW AVAILABLE

ELECTRICIAN’S GUIDE TO EMERGENCY LIGHTING

P Cook

The Electrician’s Guide to Emergency Lighting is one of a number of publications prepared by the IET to provide guidance on electrical installations in buildings. This publication is concerned with emergency lighting and in particular emergency escape lighting and must be read in conjunction with the legislation: Approved Document B and the British Standards, in particular BS 5266.

Contents:
- ISBN 978-0-86341-555-7
- 2009
- Paperback 186pp
- Order book PWR05030 £22

BEST SELLER

ELECTRICAL INSTALLATION DESIGN GUIDE

Calculations for Electricians and Designers

This book provides step-by-step guidance on the design of electrical installations, from domestic installation final circuit design to fault level calculations for LV/large LV systems.

Apprentices and trainees will find it very helpful in carrying out the calculations necessary for a basic installation. It has also been prepared to provide a design sequence, calculations and data for a complete design to be carried out. It is intended to include all necessary cable and equipment data to carry out the calculations. Consultants will be able to check the calculations of their design packages.

It includes calculations and necessary reference data not found in the design packages, such as cable conductor and sheath temperatures and allowances for harmonics.

Contents:
- Protection against voltage disturbances. Busbar trunking. Appendices. Index.
- 2008
- Paperback 234pp
- Order book PWGP170B £22

BEST SELLER

ELECTRICIAN’S GUIDE TO THE BUILDING REGULATIONS

Part P, 2nd Edition

Updated to align with the 17th Edition of the IEE Wiring Regulations, it also includes a new chapter on requirements for Scotland.

Contents:
- 2008
- Paperback 186pp
- Order book PWGP170 £22

Call: +44 (0) 1438 767328 Fax: +44 (0) 1438 767375 www.theiet.org
This Guidance Note enlarges upon and simplifies relevant requirements of BS 7671:2008. It includes detailed coverage of thermal effects, locations with increased risk, cable selection and safety service in easy-to-read text. It also includes full-colour illustrations.

- Paperback 216pp
- 2009
- Order book PWN170B

£25

GUIDANCE NOTE 2:
Isolation & Switching, 5th Edition

This Guidance Note enlarges upon and simplifies relevant requirements of BS 7671:2008. It includes detailed coverage of mechanical maintenance, emergency switching, functional switching in easy-to-read text. It also includes illustrations in full colour.

- Paperback 74pp
- 2009
- Order book PWN2170B

£25

GUIDANCE NOTE 3:
Protection Against Electric Shock, 5th Edition

This Guidance Note enlarges upon and simplifies relevant requirements of BS 7671:2008. It includes detailed coverage of the protective measures against electric shock. It also includes full-colour illustrations.

- Paperback 115pp
- 2009
- ISBN 978-0-86341-859-4
- Order book PWN5170B

£25

GUIDANCE NOTE 4:
Protection Against Fire, 5th Edition

This Guidance Note enlarges upon and simplifies relevant requirements of BS 7671:2008. It includes detailed coverage of the protective measures against fire. It also includes full-colour illustrations.

- Paperback 142pp
- 2009
- Order book PWN7170B

£25

GUIDANCE NOTE 5:
Protection Against Overcurrent, 5th Edition

This Guidance Note is principally concerned with the electrical installation aspects of earthing and bonding together with automatic disconnection, which forms the principal protective measure against indirect contact electric shock.

- Paperback 168pp
- 2007
- Order book PWRC0241

£25

GUIDANCE NOTE 6:
Selection & Erection of Equipment, 5th Edition

This Guidance Note enlarges upon and simplifies relevant requirements of BS 7671:2008. It includes detailed coverage of external influences and factors affecting the installation of cables and equipment. It discusses various types of protective devices in easy-to-read text and includes illustrations in full colour.

- Paperback 216pp
- 2009
- ISBN 978-0-86341-853-4
- Order book PWN3030

£25

GUIDANCE NOTE 7:
Protection Against Electric Shock, 5th Edition

This Guidance Note is principally concerned with the electrical installation aspects of earthing and bonding together with automatic disconnection, which forms the principal protective measure against indirect contact electric shock.

- Paperback 168pp
- 2007
- Order book PWRC0241

£25

GUIDANCE NOTE 8:
Protection Against Overcurrent, 5th Edition

This Guidance Note enlarges upon and simplifies relevant requirements of BS 7671:2008. It includes detailed coverage of initial verification, periodic inspection and test instruments.

- Paperback 128pp
- 2009
- ISBN 978-0-86341-857-0
- Order book PWN4170B

£25

GUIDANCE NOTE 9:
Isolation & Switching, 5th Edition

This Guidance Note enlarges upon and simplifies relevant requirements of BS 7671:2008. It includes detailed coverage of mechanical maintenance, emergency switching, functional switching in easy-to-read text. It also includes full-colour illustrations.

- Paperback 74pp
- 2009
- Order book PWN2170B

£25

GUIDANCE NOTE 10:
Protection Against Fire, 5th Edition

This Guidance Note enlarges upon and simplifies relevant requirements of BS 7671:2008. It includes detailed coverage of mechanical maintenance, emergency switching, functional switching in easy-to-read text. It also includes full-colour illustrations.

- Paperback 115pp
- 2009
- ISBN 978-0-86341-859-4
- Order book PWN5170B

£25

GUIDANCE NOTE 11:
Protection Against Overcurrent, 5th Edition

This Guidance Note enlarges upon and simplifies relevant requirements of BS 7671:2008. It includes detailed coverage of mechanical maintenance, emergency switching, functional switching in easy-to-read text. It also includes full-colour illustrations.

- Paperback 142pp
- 2009
- Order book PWN7170B

£25

GUIDANCE NOTE 12:
Selection & Erection of Equipment, 5th Edition

This Guidance Note enlarges upon and simplifies relevant requirements of BS 7671:2008. It includes detailed coverage of mechanical maintenance, emergency switching, functional switching in easy-to-read text. It also includes full-colour illustrations.

- Paperback 216pp
- 2009
- ISBN 978-0-86341-853-4
- Order book PWN3030

£25

GUIDANCE NOTE 13:
Isolation & Switching, 5th Edition

This Guidance Note enlarges upon and simplifies relevant requirements of BS 7671:2008. It includes detailed coverage of mechanical maintenance, emergency switching, functional switching in easy-to-read text. It also includes illustrations in full colour.

- Paperback 74pp
- 2009
- Order book PWN2170B

£25

GUIDANCE NOTE 14:
Protection Against Fire, 5th Edition

This Guidance Note enlarges upon and simplifies relevant requirements of BS 7671:2008. It includes detailed coverage of mechanical maintenance, emergency switching, functional switching in easy-to-read text. It also includes full-colour illustrations.

- Paperback 115pp
- 2009
- ISBN 978-0-86341-859-4
- Order book PWN5170B

£25

GUIDANCE NOTE 15:
Protection Against Overcurrent, 5th Edition

This Guidance Note enlarges upon and simplifies relevant requirements of BS 7671:2008. It includes detailed coverage of mechanical maintenance, emergency switching, functional switching in easy-to-read text. It also includes full-colour illustrations.

- Paperback 142pp
- 2009
- Order book PWN7170B

£25

GUIDANCE NOTE 16:
Selection & Erection of Equipment, 5th Edition

This Guidance Note enlarges upon and simplifies relevant requirements of BS 7671:2008. It includes detailed coverage of mechanical maintenance, emergency switching, functional switching in easy-to-read text. It also includes full-colour illustrations.

- Paperback 216pp
- 2009
- ISBN 978-0-86341-853-4
- Order book PWN3030

£25
Order Form

How to order

BY PHONE:
+44 (0) 1438 767328

BY FAX:
+44 (0) 1438 767375

BY EMAIL:
sales@theiet.org

BY POST:
The Institution of Engineering and Technology, PO Box 96, Stevenage SG1 2SD, UK

OVER THE WEB:
www.theiet.org/books

Details

- **Name:**
- **Job Title:**
- **Company/Institution:**
- **Address:**
- **Postcode:**
- **Country:**
- **Tel:**
- **Fax:**
- **Email:**
- **Membership No (if Institution member):**

Payment methods

- **By cheque** made payable to The Institution of Engineering and Technology
- **By credit/debit card:**
 - Visa
 - Mastercard
 - American Express
 - Maestro Issue No: __________________________
 - Card Security Code: ________________________
 - Valid from: ________________________
 - Expiry Date: ________________________
 - Card No: ________________________
 - Signature: ________________________
 - Date: ________________________

 * (Orders not valid unless signed)

- **Cardholder Name:**
- **Cardholder Address:**
- **Town:**
- **Postcode:**
- **Country:**

By official company purchase order (please attach copy)

EU VAT number: ________________________

Ordering information

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Book No.</th>
<th>Title/Author</th>
<th>Price (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subtotal

- Member discount** *
- + Postage / Handling**
- + VAT (if applicable)

Total

*Postage/Handling: Postage within the UK is £3.50 for any number of titles. Outside UK (Europe) add £5.00 for first title and £2.00 for each additional book. Rest of World add £7.50 for the first book and £2.00 for each additional book. Books will be sent via air-mail. Courier rates are available on request, please call +44 (0) 1438 767328 or email sales@theiet.org for rates.

**To qualify for discounts, member orders must be placed directly with the IET.

GUARANTEED RIGHT OF RETURN: If at all unsatisfied, you may return book(s) in new condition within 30 days for a full refund. Please include a copy of the invoice.

DATA PROTECTION: The information that you provide to the IET will be used to ensure we provide you with products and services that best meet your needs. This may include the promotion of specific IET products and services by post and/or electronic means. By providing us with your email address and/or mobile telephone number you agree that we may contact you by electronic means. You can change this preference at any time by visiting www.theiet.org/my.
contact with live parts and also separation is provided between the busbars and switching, isolation or control items and between all these items. Outgoing terminals are not separated from each other, or perhaps from the busbars.

Form 3 can be subdivided into:

- Form 3a - in which outgoing terminals are not separated from the busbars.
- Form 3b - in which outgoing terminals are separated from the busbars.

Form 3b can be further subdivided into:

- Type 1 - in which the busbars are insulated for separation.
- Type 2 - in which busbar separation is by metallic or non-metallic rigid barriers or partitions.

Form 4
The enclosure provides protection against direct contact with live parts and internal separation of the busbars from all switching, isolation and control items and outgoing terminations and separation of all items and outgoing terminations from each other. This allows for access to any single item, such as a switch-fuse or starter and its outgoing terminations, to enable work to be carried out whilst the assembly remains operational. Protection is also provided against an arcing fault in one device affecting other items. This is the usual form specified for commercial and industrial switchgear and controlgear assemblies but the designer has to consider whether, due to the extra cost, such requirements are necessary or justified. Form 4 can be subdivided into seven types:

Type 1 - in which the busbars are separated by insulation ff coverings. Terminals for external conductors are in the same compartment as the associated item of switchgear, etc., but cables may be glanded elsewhere.

Type 2 - in which the busbars are separated by metallic or non-metallic rigid barriers or partitions. Terminals or external conductors are in the same compartment as the associated item of switchgear, etc., but cables may be glanded elsewhere.

Type 3 - in which separation requirements are by metallic or non-metallic rigid barriers or partitions. Terminals or external conductors are in the same compartment as the associated item of switchgear, etc. and each item has its own integral cable glanding facility.

Type 4 - in which the busbars are separated by insulated coverings. Terminals for external conductors are not in the same compartment as the associated item of switchgear, etc., but in separate enclosed spaces. However, cables may be glanded elsewhere.

Type 5 - in which busbars are separated by metallic or non-metallic rigid barriers or partitions. Terminals for external conductors are not in the same compartment as the associated item of switchgear, etc., but in separate enclosed spaces and terminals may be separated by insulated coverings. Cables may be glanded in common cabling chambers.

Type 6 - in which all separation requirements are by metallic or non-metallic rigid barriers or partitions. Terminals for external conductors are not in the same compartment as the associated item of switchgear, etc., but in separate enclosed spaces and cables are glanded in common cabling chambers.

Type 7 - in which all separation requirements are by metallic or non-metallic rigid barriers or partitions. Terminals for external conductors are not in the same compartment as the associated item of switchgear, etc., but in separate enclosed spaces and the termination for each item has its own integral glanding facility (see Figure 2). Switchboard manufacturers therefore cannot give all-embracing assurances for safe working, according to the form of separation with parts of the assembly energized.

Specifying a particular form of separation will not guarantee this for any given form number.

General
Assemblies are to be designed and constructed so as to be able to withstand the thermal and dynamic stresses resulting from fault currents up to their rated values.

The installation designer must specify the prospective fault current conditions at the point of installation. Busbar systems for switchgear and controlgear should be adequately rated for the normal duty and maximum fault current level expected.
and should be well supported and braced, as the electromechanical stresses under fault conditions can be severe.

Bespoke panels

Many electrical panels are made for bespoke applications which require much more consideration than selecting factory built units from a catalogue. The environmental and local conditions will have the greatest influence on the choice of panel. The following issues will need to be considered when choosing the correct panel for the application:

- **weather** - if the panel is to be located outdoors, a feeder-pillar or telecommunications cabinet for example, the weather will be a factor in deciding the overall IP rating of the cabinet; see BS EN 50529

- **material** - the material of manufacture is an important issue - metallic or a type of plastic, for example. Plastic materials are usually much lighter than metallic; metallic units are often made from aluminium, sometimes stainless steel

- **mechanical impact** - if there is a mechanical impact issue, such as the risk of being struck by moving objects, BS EN 62262 provides information on the IK rating of enclosures

- **vandalism** - if the panel is susceptible to unauthorised entry or vandalism a locking mechanism will need to be considered in addition to vandal-proof fixings

- **hazardous locations** - panels installed in hazardous locations will need to meet the requirements of BS EN 60079 suite of standards, e.g. Group I: electrical apparatus for mines susceptible to firedamp; Group II: electrical apparatus for places with an explosive gas atmosphere other than mines susceptible to firedamp with sub-division IIA, IIB or IIC

- **temperature** - ambient temperature expected and the amount of heat emitted by internal components; external low temperatures may mean that internal heating would be required; high external temperatures (solar gain) may call for internal cooling

- **electromagnetic compatibility and interference issues** may need to be addressed

A concise list of external influences can be found in Appendix 5 of BS 7671:2008.

Electrical safety

When constructing a bespoke electrical panel, the requirements of BS 7671 are to be considered. The method of protection against electric shock will be established based on the environment in which the panel is located and the particular application. Regulation 410.3.3 requires that in each part of an installation, one or more protective measures are to be applied, taking account of the conditions of external influence. BS 7671 generally recognises the following four methods of protection against electric shock:

(i) Automatic disconnection of supply (Section 411)
(ii) Double or reinforced insulation (Section 412)
(iii) Electrical separation for the supply to one item of current-using equipment (Section 413)
(iv) Extra-low voltage (SELV and PELV) (Section 414).

In electrical installations the most commonly used protective measure is automatic disconnection of supply. Automatic disconnection of supply is a protective measure in which:

(i) basic protection is provided by basic insulation of live parts or by barriers or enclosures, and
(ii) fault protection is provided by protective earthing, protective equipotential bonding and automatic disconnection in case of a fault.

Regulation 412.2.4.1 states that the requirements for basic and fault protection can be met if the rated voltage of the cable(s) is not less than the nominal voltage of the system and at least 300/500 V and that adequate mechanical protection of the basic insulation is provided. Adequate implies the non-metallic sheath of the cable or non-metallic trunking or ducting complying with the BS EN 50085 series, or non-metallic conduit complying with the BS EN 61386 series.

Note that the where a lid or door in an insulating enclosure can be opened without the use of a tool or key, all conductive parts which are accessible when the lid or door is open must be held by an insulating barrier (providing a degree of protection not less than IPXXB or IP2X) preventing persons from coming unintentionally into contact with those conductive parts. This insulating barrier shall be removable only by the use of a
tool or key; Regulation 412.2.2.3 refers.

Slotted trunking, Figure 3, will not meet the IPX XB or IP2X requirement of Regulation 412.2.2.3, therefore, if the panel remains fully energised upon opening, only insulated and sheathed cables or wiring from SELV or PELV sources should be installed within the trunking. If non-sheathed cables operating at voltages in excess of the SELV and PELV requirements of Regulation 414.1.1 are installed in slotted trunking, a further barrier must be installed preventing access.

It should also be realised that Regulation 8 of the Electricity at Work Regulations places an absolute requirement (one that shall be met regardless of cost or any other consideration) on protective conductor connections to earth:

... a conductor shall be regarded as earthed when it is connected to the general mass of earth by conductors of sufficient strength and current-carrying capability to discharge electrical energy to earth.

It may be questioned whether the termination of steel or aluminium wire armour (where used as a protective conductor) with glands into metal gland plates, which themselves may only be bolted to the switchgear or controlgear frame, is an adequate connection. Cable gland ‘earth tags’ and supplementary connections to the equipment earth terminals may be necessary. In any case it should be ensured that any paint or other surface finish on the switchgear does not prevent effective electrical continuity between the adjacent parts. During site installation and commissioning, tests as required by BS 7671 Part 6 should be carried out on the complete assembly, plus any other specific tests advised by the manufacturer or required by the client, user or engineer. It is not usual to carry out a repeat of specialist tests, e.g. a flash test at site; however, in the event of such a requirement or request, the manufacturer’s advice should be sought.

Competency

As with all installations, work must only be undertaken by competent persons. BS 7671 is not a statutory document and it is not a legal requirement to follow the practices referred to within. Primarily, the main piece of legislation to consider is the Electricity at Work regulations 1989 (EWR). The EWR states that all systems are to be safe so as to prevent danger and prevent the risk of injury.

The designer and installer must be aware of the statutory requirements under the Electricity at Work Regulations and the Construction (Design & Management) Regulations 2007 (CDM 2007), etc., for the safe design, construction, operation and provision for maintenance of electrical equipment assemblies. Adequate access, working space and lighting need to be provided where work is to be carried out on or near equipment, in order that persons may work safely.

The Memorandum to the Electricity at work Regulations 1989, HS(R)25, records that the IEE Wiring Regulations is widely recognised and accepted in the UK and compliance with them is likely to achieve compliance with relevant aspects of the 1989 Regulations in point 7 of the introduction.

References and further information

- BS 7671:2008 Requirements for Electrical Installations, IEE Wiring Regulations, Seventeenth Edition
- Electricity at Work regulations 1989
 - www.opsi.gov.uk/si/si1989/Uksi_19890635_en_1.htm
- Guidance Note 1 - Selection and Erection
- BS EN 50529:1992 Degrees of protection provided by enclosures (IP code)
- BS EN 62262:2002 Degrees of protection provided by enclosures for electrical equipment against mechanical impacts (IK code)
- BS EN 60079 Electrical apparatus for explosive gas atmospheres suite of standards
- BS EN 60439-1:1999 Low-voltage switchgear and controlgear assemblies. Type-tested and partially type-tested assemblies
- BS EN 50085-1:2005 Cable trunking systems and cable ducting systems for electrical installations. General requirements
- BS EN 61386-1:2008 Conduit systems for cable management. General requirements

Figure 3: Slotted trunking
New IEE Guidance Note 7

by Geoff Cronshaw

The IEE Wiring Regulations 17th Edition (BS 7671:2008) includes additional sections on special locations that were not included in the previous edition; as follows: Marinas (Section 709), Exhibitions, shows and stands (Section 711), Floor and ceiling heating systems (Section 740), and Photovoltaic power systems (Section 712). The special locations that were contained in the previous edition of BS 7671 have been revised to align with the latest IEC and CENELEC standards.

All those involved in electrical installation work need to be familiar with these new requirements.

Help is at hand, in the form of a new edition of IEE Guidance Note 7 (Special Locations).

For example: Section 701 locations containing a bath or shower. What's new?

Changes to the zonal system, RCD protection on all bathroom circuits, 230 V socket outlets permitted 3 m horizontally from the boundary of zone 1; supplementary equipotential bonding may be omitted subject to the Regulations being met. Chapter 1 of IEE Guidance Note 7 gives detailed requirements.

RCD Protection

Regulation 701.411.3.3 now requires that additional protection shall be provided for all circuits of the location by the use of one or more RCDs having the characteristics specified in Regulation 415.1.1. This is a significant change. Previously (601-09-02), only fixed current using equipment (other than electric showers) located in zone 1 required 30 mA RCD protection and current using equipment (other than fixed current using equipment – such as a washing machine, if suitable for use in a bathroom, connected through a fused connection unit) in zone 3 required 30 mA RCD protection. Regulation 701.411.3.3 means that all circuits, including lighting, electric showers, heated towel rails, etc., require RCD protection, not exceeding 30 mA.

230 volt socket-outlets

Another significant change is introduced by Regulation 701.512.3. This now permits 230 V socket-outlets to be installed in a room containing a bath or shower providing they are installed 3 m horizontally from the boundary of zone 1. This change resolves the ambiguity that existed between locations containing a bath or shower and a bedroom containing a shower.

How to order your copy of IEE Guidance Note 7 (available from the 30th November 2009).

By phone: +44(0)1438 767328
By fax +44(0)1438 767375
By email sales@theiet.org.
Over the web www.theiet.org/shop

WIRING MATTERS
Get your own copy

Wiring Matters is free. It is published quarterly and keeps you up to date with issues in electrical installations. To make sure you get your copy add or update your contact details via:

www.theiet.org/wm
Essential tools of the trade

New from the Institution of Engineering and Technology

Guidance Note 6: Protection Against Overcurrent
Product Code PWG6170B Price £25

This book enlarges upon and simplifies relevant requirements of BS 7671:2008. It includes guidance on protection of conductors in parallel against overcurrent and the effect of harmonic currents on balanced 3-phase systems.

Visit www.theiet.org/gn6wm

Guidance Note 7: Special Locations
Product Code PWG7170B Price £25

The Guidance Note enlarges upon and simplifies relevant requirements of BS 7671:2008. It includes detailed coverage of new special locations covered in the IEE Wiring Regulations 17th Edition in easy-to-read text. It also includes full colour illustrations.

Visit www.theiet.org/gn7wm

For further information, or to order online, visit

www.theiet.org/wiringregs
Enlightened electricians choose NAPIT

Member benefits include:

✓ NO EXTRA CHARGE for electrical commercial & industrial works and periodic reports
✓ FREE membership to electrical Trade Association and online forum
✓ WORK QUALITY guarantee on notified work
✓ FREE legal and technical advice helplines
✓ SAVE up to £180 when joining from another scheme provider

To speak to the industry gurus please call: 0800 954 0438

info@napit.org.uk www.napit.org.uk