ELECTRICAL INSTALLATION
DESIGN GUIDE
Calculations for Electricians and Designers
2nd Edition
Contents

Cooperating organisations
Preface

Chapter 1 Design sequence
1.1 Load characteristics
1.2 Supply characteristics
1.3 Installation outline
1.4 Distribution design
1.5 Standard final circuits
1.6 Isolation and switching
1.7 Final assessment
1.8 Compliance with BS 7671

Chapter 2 Simple installations and final circuits
2.1 Introduction
2.2 Supply characteristics
2.3 Fault rating of switchgear
2.4 Final circuit overcurrent devices and cables
2.5 Final circuit voltage drop limitations
2.6 Fault protection
2.7 Short-circuit current protection
2.8 Protective conductors
2.9 Standard final circuits

Chapter 3 Maximum demand and diversity
3.1 Introduction
3.2 Installation outline
3.3 Final circuit current demand
3.4 Diversity between final circuits
3.5 Complex installations

Chapter 4 Selection of cables for current-carrying capacity
4.0 Symbols
4.1 Preliminary design
4.2 Overcurrent requirements
4.3 Current-carrying capacity tables
4.4 Protection against overload and short-circuit 51
4.5 Protection against fault current only 52
4.6 Corrections for grouping not liable to simultaneous overload 54
4.7 Motors 56

Chapter 5 Voltage drop 59
5.1 Voltage drop in consumers’ installations 59
5.2 Distribution system voltage drop 59
5.3 Basic voltage drop calculation 60
5.4 Correction for inductance 62
5.5 Correction for load power factor 64
5.6 Correction for conductor operating temperature 65
5.7 Correction for both conductor operating temperature and load power factor 66

Chapter 6 Calculation of fault current 67
6.1 Determination of prospective fault current 67
6.2 Determined by enquiry 69
6.3 Determined by calculation 72

Chapter 7 Shock protection 79
7.1 Shock protection 79
7.2 Protective measure: automatic disconnection of supply 80
7.3 Circuit calculations 83

Chapter 8 Protection against fault current 85
8.1 The adiabatic equation 85
8.2 Selection from Table 54.7 87
8.3 Introduction to calculations 89
8.4 Simple calculation 89
8.5 Energy let-through calculation 91
8.6 Plotting protective conductor adiabatics 95
8.7 Protective conductor as a sheath or armour of a cable 98
8.8 Plotting of cable armour adiabatics 99
8.9 Calculation of armour capability 100
8.10 Conduit and trunking 103
8.11 Earthing and bonding conductors 104

Chapter 9 Calculations associated with testing 109
9.1 General 109
9.2 Continuity 110
9.3 Earth fault loop impedance Z_s 110
9.4 Reduced section protective conductors 112
<table>
<thead>
<tr>
<th>Chapter 10</th>
<th>Impedance of copper and aluminium conductors</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>115</td>
</tr>
<tr>
<td>10.2</td>
<td>Conductor resistance and temperature</td>
<td>115</td>
</tr>
<tr>
<td>10.3</td>
<td>Impedance of cables from voltage drop tables</td>
<td>116</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 11</th>
<th>Harmonics</th>
<th>119</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>119</td>
</tr>
<tr>
<td>11.2</td>
<td>Cable ratings</td>
<td>120</td>
</tr>
<tr>
<td>11.3</td>
<td>Voltage drop</td>
<td>121</td>
</tr>
<tr>
<td>11.4</td>
<td>Overcurrent protection</td>
<td>123</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 12</th>
<th>Protection against voltage disturbances</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>125</td>
</tr>
<tr>
<td>12.2</td>
<td>The overvoltages</td>
<td>125</td>
</tr>
<tr>
<td>12.3</td>
<td>Power frequency fault voltage</td>
<td>125</td>
</tr>
<tr>
<td>12.4</td>
<td>Power frequency stress voltages</td>
<td>129</td>
</tr>
<tr>
<td>12.5</td>
<td>Earthing of 11 kV substations</td>
<td>129</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 13</th>
<th>Busbar trunking</th>
<th>131</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Symbols</td>
<td>131</td>
</tr>
<tr>
<td>13.2</td>
<td>Voltage drop</td>
<td>131</td>
</tr>
<tr>
<td>13.3</td>
<td>Fault currents</td>
<td>132</td>
</tr>
</tbody>
</table>

| Appendix A | Symbols | 135 |

| Appendix B | Standard final circuits | 139 |

<table>
<thead>
<tr>
<th>Appendix C</th>
<th>Avoidance of unintentional operation of circuit-breakers</th>
<th>155</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1</td>
<td>Lighting circuit applications</td>
<td>156</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appendix D</th>
<th>Further cable calculations</th>
<th>159</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1</td>
<td>Cable life</td>
<td>159</td>
</tr>
<tr>
<td>D.2</td>
<td>Temperatures (core and sheath)</td>
<td>160</td>
</tr>
<tr>
<td>D.3</td>
<td>Inductance of cables in parallel</td>
<td>160</td>
</tr>
<tr>
<td>D.4</td>
<td>Calculation of sheath voltages</td>
<td>161</td>
</tr>
</tbody>
</table>

| Appendix E | Symbols from CENELEC report R064-003 | 165 |

| Appendix F | Equipment data | 167 |

| Index | | 187 |
Preface

This book provides step-by-step guidance on the design of electrical installations, from domestic installation final circuit design to fault level calculations for LV/large LV systems. Apprentices and trainees will find it very helpful in carrying out the calculations necessary for a basic installation.

The book has also been prepared to provide a design sequence, calculations and data for a complete design. All necessary cable and equipment data to carry out the calculations is included. Consultants will be able to check the calculations of their design packages. It includes calculations and necessary reference data not found in the design packages, such as cable conductor and sheath temperatures and allowances for harmonics.
A
- Adiabatic, equation
 - curve plotting
- After-diversity demand
- Aluminium, cables
 - coefficient of resistance
 - conductors
 - resistance
- Aluminium strip armour cables
- Ambient temperature, correction factor
 - multiplier
- Area, steel underfloor trunking
- Armour, current rating
- Attenuation of fault level
- Automatic disconnection of supply

B
- Basic protection
- Bonding conductors, supplementary
- BS 88 fuse characteristics
- BS 88 fuse disconnection times
- BS 3036 fuse disconnection times
- BS 7671 Appendix 4
 - Table 4B1
 - Table 4C1
 - Table 41.1
 - Table 41.3
 - Table 54.7
- Busbar trunking, general
 - fault currents
 - voltage drop
- \(C_a\)
- \(C_c\)
- \(C_d\)
- \(C_f\)
- \(C_g\)
- \(C_i\)
- \(C_r\)
- \(C_s\)
- \(C_t\)
- Cable
 - adiabatics
 - armour
 - armour area
 - armour as protective conductor
 - calculations, further

Appx D
- Calculation for Electricians and Designers
- 2.8, 4.5, 8.1, 8.4
- 8.6, 8.8
- 3.4
- Table F.9
- 10.2, Tables F.4, F.17
- Ch. 10
- Tables F.1, F.7A, F.8A, F.9
- Table F.9
- 4.3.2, 9.3.2
- 4.3.2, Table F.2
- Table F.10
- 8.9
- 6.2.2
- 7.2
- 7.1
- 8.11.3
- 8.6, 8.8
- Tables 8.6, 8.8
- Table 8.7
- 4.3, 4.6, 5.3
- 4.3.2
- 4.3.3
- 7.2.1
- 7.2.3
- 8.2
- Ch. 13
- 13.3
- 13.2
- 4.3.2
- 4.3.5
- 4.3.5
- 4.3.3
- 4.3.4
- 6.3.2, 9.3.2, Table F.3
- 4.3.5
- 5.6
- 8.8
- 8.7, Table F.8B
- Tables 8.9, F.7B, F.8B
- 8.7, Table 8.9
- Appx D
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>core temperature</td>
<td>D.2</td>
</tr>
<tr>
<td>data</td>
<td>Appx F</td>
</tr>
<tr>
<td>impedance</td>
<td>10.3</td>
</tr>
<tr>
<td>life</td>
<td>D.1</td>
</tr>
<tr>
<td>ratings, harmonics</td>
<td>11.2</td>
</tr>
<tr>
<td>reactance</td>
<td>D.3</td>
</tr>
<tr>
<td>sheath earth</td>
<td>8.7</td>
</tr>
<tr>
<td>sheath temperature</td>
<td>D.2</td>
</tr>
<tr>
<td>voltage drop</td>
<td>10.3</td>
</tr>
<tr>
<td>Cables buried in ground</td>
<td>4.3.5</td>
</tr>
<tr>
<td>Cables, in parallel, inductance in thermal insulation</td>
<td>4.3.4</td>
</tr>
<tr>
<td>Calculations</td>
<td></td>
</tr>
<tr>
<td>final circuit current demand</td>
<td>3.3</td>
</tr>
<tr>
<td>current-carrying capacity</td>
<td>Ch. 4</td>
</tr>
<tr>
<td>motor</td>
<td>4.7</td>
</tr>
<tr>
<td>prospective fault levels</td>
<td>6.3</td>
</tr>
<tr>
<td>shock protection</td>
<td>7.3</td>
</tr>
<tr>
<td>voltage drop</td>
<td>5.3</td>
</tr>
<tr>
<td>Cartridge fuse short-circuit capacity</td>
<td>6.1</td>
</tr>
<tr>
<td>CENELEC Report R064-003</td>
<td>13.1</td>
</tr>
<tr>
<td>symbols</td>
<td>Appx E</td>
</tr>
<tr>
<td>Certificates</td>
<td>1.8, 2.2.1</td>
</tr>
<tr>
<td>Circuit-breaker</td>
<td></td>
</tr>
<tr>
<td>characteristics</td>
<td>Appx C, 4.5</td>
</tr>
<tr>
<td>energy let-through</td>
<td>8.4.2, 8.5</td>
</tr>
<tr>
<td>short-circuit capacity</td>
<td>6.1</td>
</tr>
<tr>
<td>unintentional operation</td>
<td>Appx C</td>
</tr>
<tr>
<td>Circuit</td>
<td></td>
</tr>
<tr>
<td>cooker</td>
<td>3.3.1 Ex2</td>
</tr>
<tr>
<td>demand</td>
<td>3.3</td>
</tr>
<tr>
<td>final</td>
<td>Ch. 2, Appx B</td>
</tr>
<tr>
<td>immersion heater</td>
<td>3.3.1 Ex4</td>
</tr>
<tr>
<td>lighting</td>
<td>3.3.1 Ex3</td>
</tr>
<tr>
<td>motor</td>
<td>3.3.1 Ex5</td>
</tr>
<tr>
<td>protective conductor sizes</td>
<td>2.8, Ch. 8</td>
</tr>
<tr>
<td>shower</td>
<td>2.4.1, 2.6, 3.3.1 Ex1</td>
</tr>
<tr>
<td>Circuits, lightly loaded</td>
<td></td>
</tr>
<tr>
<td>standard</td>
<td>4.3.3</td>
</tr>
<tr>
<td>Appx B</td>
<td></td>
</tr>
<tr>
<td>Coefficient of resistance</td>
<td>10.2, Table F.4</td>
</tr>
<tr>
<td>Completion certificates</td>
<td>1.8</td>
</tr>
<tr>
<td>Complex installations</td>
<td>3.5</td>
</tr>
<tr>
<td>Conductor</td>
<td></td>
</tr>
<tr>
<td>adiabatics</td>
<td>8.6</td>
</tr>
<tr>
<td>impedance</td>
<td>Ch. 10</td>
</tr>
<tr>
<td>operating temperature</td>
<td>4.3.6, D.2, Table F.3</td>
</tr>
<tr>
<td>Conduit</td>
<td>8.10</td>
</tr>
<tr>
<td>Continuity testing</td>
<td>9.2</td>
</tr>
<tr>
<td>Cooker circuit</td>
<td>3.3.1 Ex2</td>
</tr>
<tr>
<td>Cooking diversity</td>
<td>3.4</td>
</tr>
<tr>
<td>Coordination load, device and cable</td>
<td>2.4</td>
</tr>
<tr>
<td>characteristics</td>
<td></td>
</tr>
<tr>
<td>Copper,</td>
<td></td>
</tr>
<tr>
<td>coefficient of resistance</td>
<td>10.2, Tables F.4, F.17</td>
</tr>
<tr>
<td>conductor resistance</td>
<td>Tables F.1, F.6, F.7A, F.8A, F.14, F.15, F.16</td>
</tr>
<tr>
<td>conductors</td>
<td>Ch. 10</td>
</tr>
<tr>
<td>Core temperature</td>
<td>D.2</td>
</tr>
<tr>
<td>Correction factors</td>
<td>6.3.2, Table F.17</td>
</tr>
</tbody>
</table>
Index

Cross-sectional area, armour
- steel conduit
- trunking
Current-carrying capacity
Currents fault
Currents overload

D
Definitions, symbols
- commercial
- domestic
- final circuit
Departures from BS 7671
Design
Design current I_b
Design, preliminary
Design responsibility
Deterioration of cables
Direct contact see Basic protection
Disconnection times
Distribution circuit,
- overcurrent protection
- diversity
Distribution design
Distribution system,
- calculations
- voltage drop
Distribution transformer
- impedance
Diversity
Domestic demand

E
Earthing arrangements
- conductor
Earthing of 11 kV substations
Embedded generation
Equipment tables
External earth fault loop
- impedance

F
Fault currents
- busbar trunking
- determined by enquiry
Fault protection
Fault rating, switchgear
Fault voltage
Final circuit
- demand
- diversity
- formulae
- thermal insulation
- voltage drop
Formulae, circuits
Fundamental frequency
Fuse characteristics
Index

G
- Grouping,
 - three-phase
 - lightly loaded
 - overload
 - rating factor
 - 4.3.3

H
- Harmonics
 - cable ratings
 - discharge lamps
 - overcurrent protection
 - switch mode power supplies
 - voltage drop
 - Household demand
 - HV supplies
 - HV system earth faults
 - Ch. 11 11.2 11.1 11.4 11.1 11.3 3.1 1.2 12.3

I
- \(I \)
 - characteristics
 - energy let-through
 - Immersion heater circuit
 - Impedance
 - steel conduit
 - steel trunking
 - transformers
 - Indirect contact see Fault protection
 - Inductance of cables in parallel
 - Inrush current
 - Installation
 - certificates
 - design overcurrent
 - outline
 - schematic
 - small
 - voltage drop
 - Isolation
 - \(I_t \) tabulated cable rating
 - D.3 2.4.1, 4.3.1

J
- no entries

K
- \(k \) factor
 - Kitchen demand
 - 8.2 3.1

L
- Lead, coefficient of resistance
 - 10.2, Table F.4
 - Let-through energy
 - Life of cables
 - D.1
 - Lighting circuits
 - 3.3.1 Ex3, Appx B
 - voltage drop
 - 2.5
 - Load
 - characteristics
 - diversity
 - power factor – voltage drop
 - 1.1 3.1 5.4
M
- Main bonding conductors: 8.1.1
- Maximum demand: Ch. 3
- Maximum earth fault loop impedance: 7.2.3
- Maximum prospective short-circuit current: 6.2
- Mineral cable
 - heavy duty: Tables F.15, F.16
 - light duty: Table F.14
- Motor circuit: Ch. 3
 - 3.3.1 Ex5, 4.7
- Motor diversity: 3.4
- (mV/A/m): Ch. 5, 10.3

N
- New supplies: 2.2

O
- Office design: 3.4.1
- Overcurrent devices, cables, circuits: 2.4
- Overcurrent protection: 4.2
- Overload currents
 - not simultaneous: 4.6
 - parallel cables: 4.4.2
 - protection: 8.1.2
 - protection against: 4.4
 - protection, omission: 2.4.3, 4.5
 - small: 4.2.3
- Overvoltage protection: Ch. 12

P
- Parallel cables: D.3
- Part 7: 1.4.6
- Peak tripping current: Appx C
- Phase displacement: Ch. 11
- PME: 6.2.4
- Power factor – voltage drop: 5.5
- Power frequency stress voltages: 12.4
- Prospective fault current: 1.4.3, Ch. 6
- Prospective short-circuit currents
 - single-phase: Table F.18A
 - three-phase: Table F.18B
- Protection against
 - electric shock: 7.1
 - overload and short-circuit: 2.7, 4.4
- Protective conductor
 - adiabatic: 2.8, 8.3, 8.6, 8.8
 - armour as: 1.4.5, 8.7, 8.8, 8.9
 - conduit as: 8.10
 - cross-sectional area: 8.2
 - reduced section: 1.4.5, 9.4
 - sheath of cable: 8.7
 - sizes: Ch. 8
 - trunking as: 8.10
- Protective measures, shock: 7.1
- PVC cables
 - single-core: Tables F.7A, F.7B, Table F.6

Q
- no entries
Index

<table>
<thead>
<tr>
<th>R</th>
<th>9.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R₁ + R₂</td>
<td>2.4.1, Appx B</td>
</tr>
<tr>
<td>Radial final circuits</td>
<td>2.5</td>
</tr>
<tr>
<td>voltage drop</td>
<td>6.1</td>
</tr>
<tr>
<td>Rated short-circuit capacities</td>
<td>4.3.1</td>
</tr>
<tr>
<td>Rating factors</td>
<td>D.3</td>
</tr>
<tr>
<td>Reactance of cable</td>
<td>9.4</td>
</tr>
<tr>
<td>Reduced section, protective conductors</td>
<td>6.2</td>
</tr>
<tr>
<td>testing</td>
<td>7.1</td>
</tr>
<tr>
<td>Regulation 28 of ESQCR</td>
<td>4.2</td>
</tr>
<tr>
<td>Regulation 410</td>
<td>4.3.6</td>
</tr>
<tr>
<td>Regulation 431.1</td>
<td>4.3.4</td>
</tr>
<tr>
<td>Regulation 432</td>
<td>5.1</td>
</tr>
<tr>
<td>Regulation 433</td>
<td>8.2</td>
</tr>
<tr>
<td>Regulation 434</td>
<td>Ch. 8</td>
</tr>
<tr>
<td>Regulation 434.1</td>
<td>8.1</td>
</tr>
<tr>
<td>Regulation 434.5.2</td>
<td>6.1</td>
</tr>
<tr>
<td>Regulation 435.1</td>
<td>8.1.2</td>
</tr>
<tr>
<td>Regulation 512.1.2</td>
<td>4.3.6</td>
</tr>
<tr>
<td>Regulation 523.9</td>
<td>4.3.4</td>
</tr>
<tr>
<td>Regulation 525</td>
<td>5.1</td>
</tr>
<tr>
<td>Regulation 534.1.4</td>
<td>8.2</td>
</tr>
<tr>
<td>Regulation 543</td>
<td>Ch. 8</td>
</tr>
<tr>
<td>Regulation 543.1.3</td>
<td>8.1</td>
</tr>
<tr>
<td>Resistance,</td>
<td>10.2, Table F.4</td>
</tr>
<tr>
<td>coefficient</td>
<td>6.3.2, Table F.17</td>
</tr>
<tr>
<td>correction factors</td>
<td>Tables F.14, F.15, F.16</td>
</tr>
<tr>
<td>mineral cable</td>
<td>Ch. 10, Table F.1</td>
</tr>
<tr>
<td>of conductors</td>
<td>4.3.5</td>
</tr>
<tr>
<td>Rewireable fuses</td>
<td>2.4.2, Appx B</td>
</tr>
<tr>
<td>Ring final circuits</td>
<td>2.5</td>
</tr>
<tr>
<td>voltage drop</td>
<td>13.1, Appx E</td>
</tr>
<tr>
<td>R0604-003</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>9.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule of test results</td>
<td>3.2</td>
</tr>
<tr>
<td>Schematic</td>
<td>D.2</td>
</tr>
<tr>
<td>Sheath, temperature</td>
<td>D.4</td>
</tr>
<tr>
<td>voltages</td>
<td></td>
</tr>
<tr>
<td>Shock protection</td>
<td>1.4.4, Ch. 7</td>
</tr>
<tr>
<td>circuit calculations</td>
<td>7.3</td>
</tr>
<tr>
<td>Short-circuits</td>
<td>4.4</td>
</tr>
<tr>
<td>capacities switchgear</td>
<td>6.1</td>
</tr>
<tr>
<td>current three-phase supply</td>
<td>6.2.3</td>
</tr>
<tr>
<td>single-phase</td>
<td>2.7, 6.2.2</td>
</tr>
<tr>
<td>Shower circuit</td>
<td>2.4.1, 2.6, 3.3.1 Ex1</td>
</tr>
<tr>
<td>Simple installations</td>
<td>Ch. 2, 3.4.1</td>
</tr>
<tr>
<td>Simultaneous overload, not liable</td>
<td>4.6</td>
</tr>
<tr>
<td>Single-core cables</td>
<td>Tables F.6, F.9</td>
</tr>
<tr>
<td>Socket circuits, radial</td>
<td>2.5.1</td>
</tr>
<tr>
<td>Special installations or locations</td>
<td>1.4.6</td>
</tr>
<tr>
<td>Standard circuits</td>
<td>1.5, Ch. 2, Appx B</td>
</tr>
<tr>
<td>Standby systems</td>
<td>1.1.2</td>
</tr>
<tr>
<td>Star-delta starting</td>
<td>4.7</td>
</tr>
<tr>
<td>Starting current</td>
<td>Appx C</td>
</tr>
<tr>
<td>Steel,</td>
<td>Table F.4</td>
</tr>
<tr>
<td>coefficient of resistance</td>
<td>Table F.11</td>
</tr>
<tr>
<td>conduit, impedance</td>
<td></td>
</tr>
</tbody>
</table>
trunking impedance
underfloor trunking
Storage heater diversity
Stress voltage
Submains
Substations – Earthing of 11 kV
Supplementary bonding conductors
Supply, characteristics
 earth fault loop impedances
 fault level attenuation
 system fault levels
Switchgear fault rating
 short-circuit capacities
Switching
Symbols
 CENELEC
System earthing

T
Table 4B1
Tables 4C1–4C6
Table 52.2
Tables 54.2 to 54.6
Table 54.7
Temperature conductor corrections
Temperature correction
Testing
 continuity
 earth fault loop impedance
Thermal insulation
 final circuits
Thermoplastic cables
Thermosetting cables
Third harmonics
Three-phase voltage drop
TN systems
Transformer impedance
Triplen harmonics
Trunking
TT systems
Typical distribution system

U
Unintentional operation, lighting circuits

V
Voltage disturbances protection
Voltage drop
 busbar trunking
 cables
 conductor operating temperature
 distribution system
 final circuit
 inductance
 lighting circuit
 multiplier C_r
 power factor
 radial final circuit
Index

ring final circuit 2.5.2
temperature correction 5.6, 7.3
three-phase 5.3.2
Voltage factor c Table A.1
Voltages, sheath D.4

W
Water heater diversity 3.4

XY
no entries

Z

Z_{41} 7.3
Z_e 2.2.3
Z_s 7.2.3, 9.3